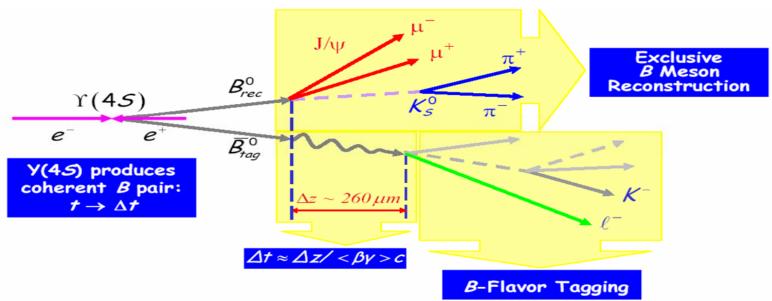


#### **BaBar**

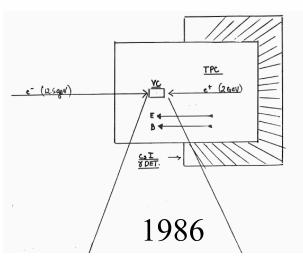
David Brown November 8, 2005

#### **CKM Parameters at BaBar**




$$\begin{bmatrix} d' \\ s' \end{bmatrix}_{weak} = \begin{bmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{bmatrix}_{CKM} \times \begin{bmatrix} d \\ b \end{bmatrix}_{mass}$$




+  $\tau$ , charm,  $\gamma\gamma$ , ISR, inclusive spectra,...

### The Asymmetric B Factory (PEP II)









## Pier Oddone won the 2005 Panofsky Prize

"For his insightful proposal to use an asymmetric B-Factory to carry out precision measurements of CP violation in B-meson decays, and for his energetic leadership of the first conceptual design studies that demonstrated the feasibility of this approach."

#### The LBNL BaBar Group



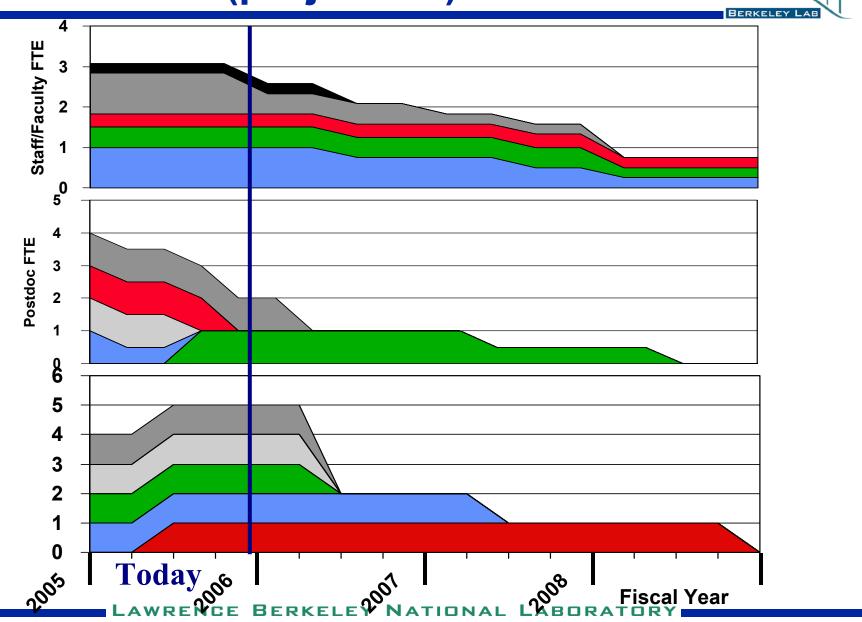
- Faculty: M. Battaglia, R. Jacobsen, Y. Kolomensky
- Senior Staff: D. Brown, R. Cahn
- Active Retirees: G. Abrams, J. Kadyk, L. Kerth, G. Lynch, W. Wenzel
- Post-docs: A. Gritsan, D. Lopes Pegna, L. Mir
- Graduate Students: Y. Groysman, G. Kukartsev, T. Orimoto,
   K. Tackmann, Tomohiko Tanabe
- NERSC: I. Gaponenko
- Visitors: J.Button-Shafer, C. Anders, E. Prencipe

**Recently Joined** Leaving Soon

#### **BaBar Group Evolution**



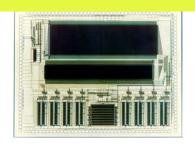
#### Historical


- —Faculty/Staff ⇒ Astro(3), Neutrinos(1), FNAL Director(1)
- —Postdocs ⇒ Staff/Faculty(4), Private Industry(2)
- —Grad Students ⇒ Postdoc(1), Private Industry(2), Other(1)

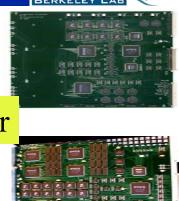
#### Current

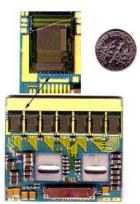
- —3 Grad Students leaving this coming summer
- -2 Postdocs will leave by/before summer

# LBNL BaBar Personnel Evolution (projection)

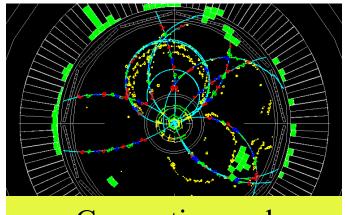




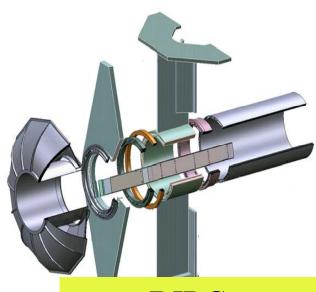


# LBNL's Contributions to BaBar Hardware




Drift Chamber Readout IC








SVT Readout IC

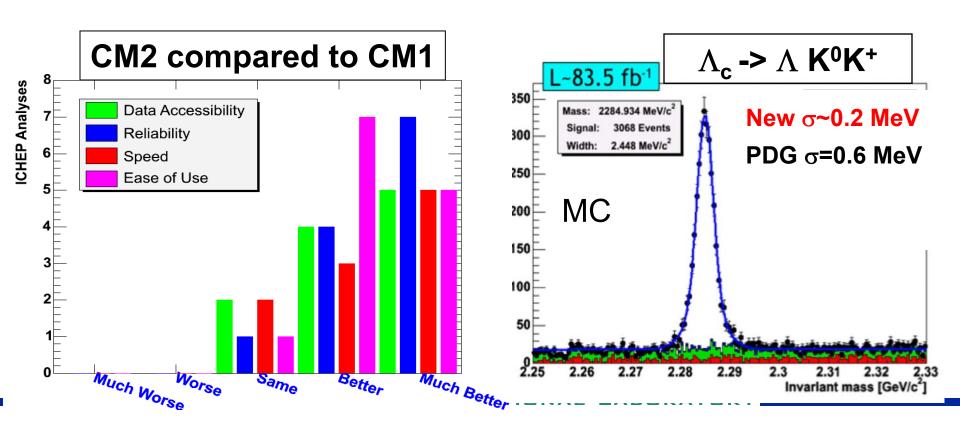


Computing and Software



DIRC

# LBNL's Contributions to BaBar Computing



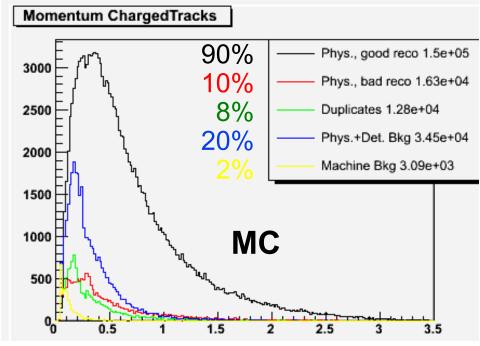

- First C++ HEP reconstruction, analysis framework
- Track reconstruction
- SVT alignment
- DIRC reconstruction
- First fully C++ online DAQ
- Online controls
- Computing Model 2
  - —New data storage format
  - —New analysis model

### The Success of Computing Model 2



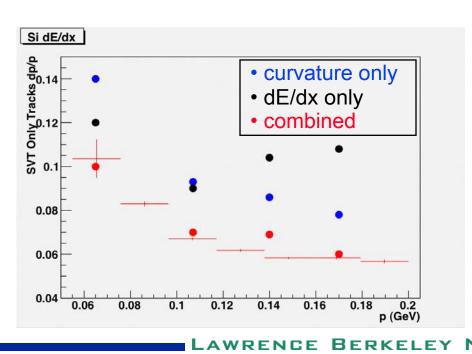
- Replaced Objectivity with Root-based event store
- Introduced a new data format which ...
  - Provides access to detailed detector information
  - Allows users to customize event data for their analysis
- LBNL provided concepts, design, implementation, and leadership

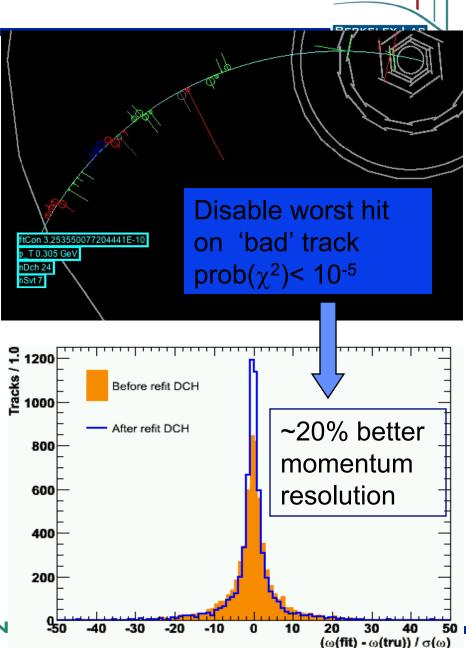



### **Improving BaBar Tracking**



- Tracks are the core of BaBar analysis
  - —Precisely reconstruct P, trajectory of charged particles
  - —Track efficiency is combinatoric in most analyses
  - —Improved tracking efficiency = 'free luminosity'
- CM2 provides detailed detector-level information
- LBNL has initiated an effort to improve tracks in analysis

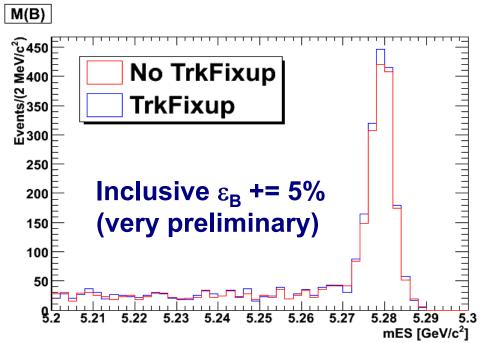

#### MC tracking study


86% single-track efficiency
11% angular acceptance
3% Pat. Rec. failure
10% bad reconstruction
Parameter 'pull' > 10σ
30% fake tracks
Loopers, decays, ...



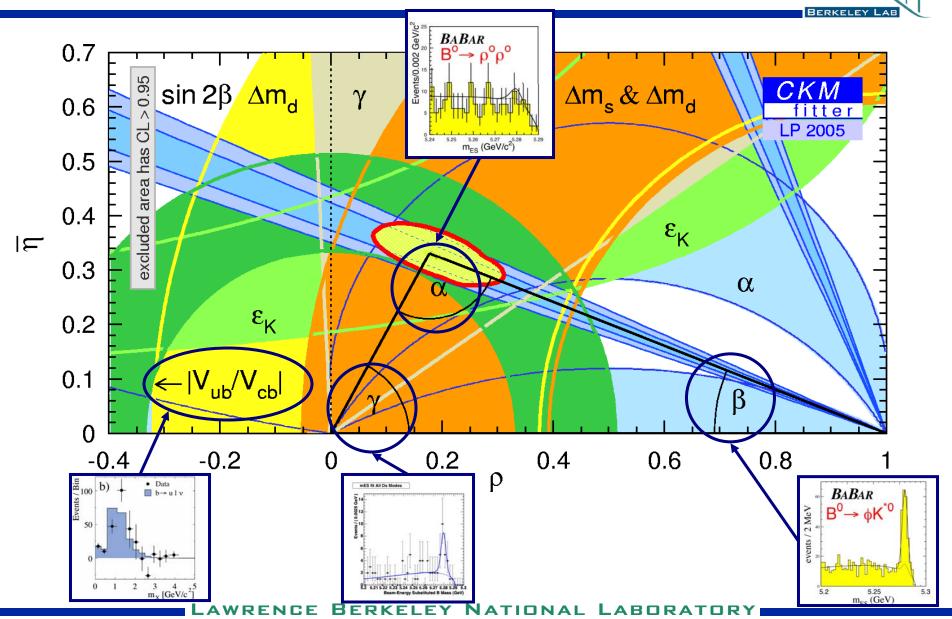
### 'Fixing' Tracks

- Improve resolution
  - —Hit Filtering
  - —dE/dx constraint
  - —Adding 'lost' Svt hits
- Filter fakes
  - —loopers, decays, 'ghosts'

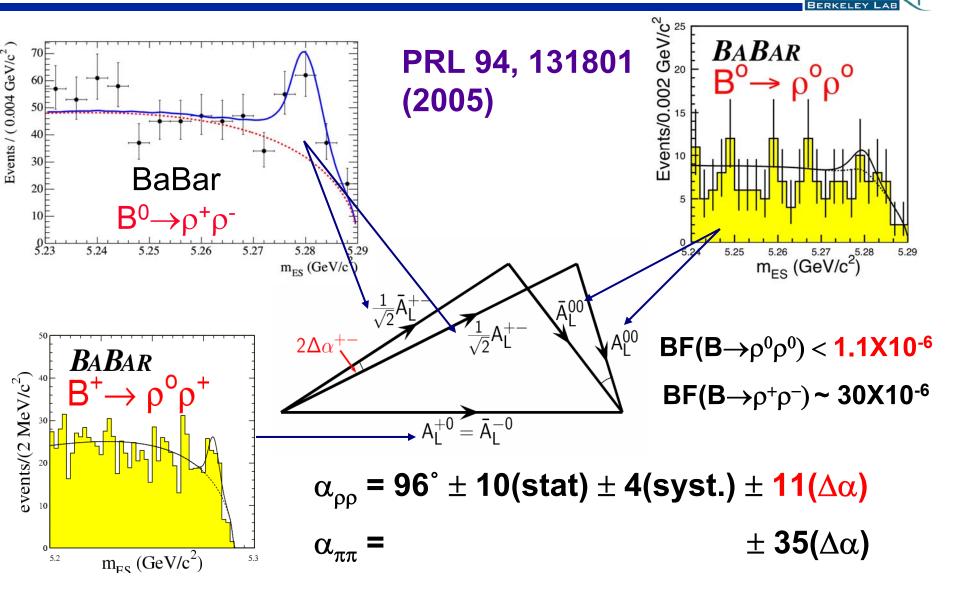





### **Track Fixup Project**

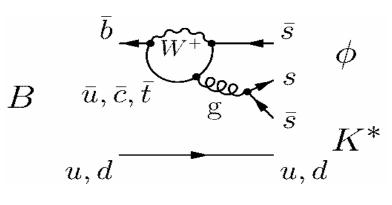


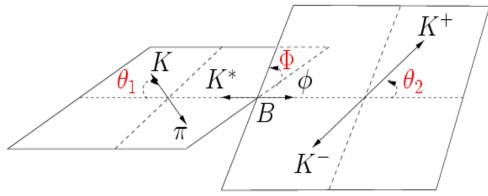

- LBNL providing leadership and (most) manpower
- Physics analysis getting involved
  - AWG representatives will validate impact on example analyses
  - LBNL will coordinate physics validation efforts
- Tentatively scheduled for deployment in summer 2006
  - After summer conference results are produced
  - Deployed unobtrusively during 'skim' production




### **The Unitary Triangle**



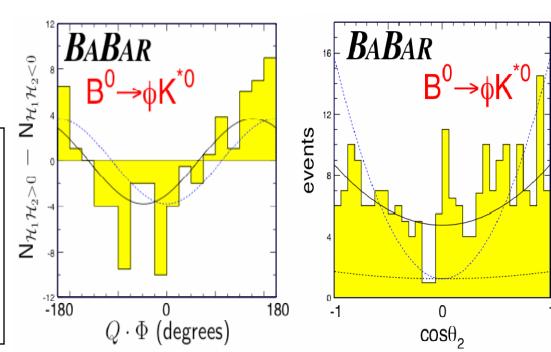




### VV pioneers: extracting Δα from B→ρ ρ (Gritsan, Groysman, Mir)



### $B \rightarrow \phi K^*$ Polarization Puzzle (Gritsan)



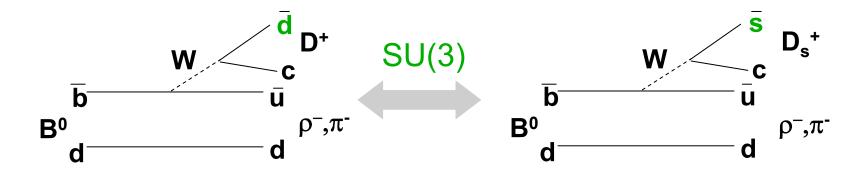





BF ~10<sup>-5</sup>

## Extracts from full CP analysis PRL 93, 231804 (Dec. 2004)

- Mixed polarization
  - Additional SM process?
  - New Physics?
- Non-zero (strong) phase
  - Contrary to factorization



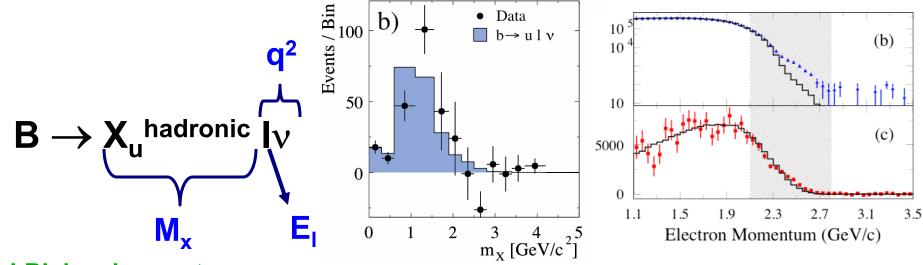

# Helping constrain γ: $B^0 \rightarrow D_s^{(*)+} \rho^-, \pi^-$ (Orimoto, Kolomensky)



- •B<sup>0</sup>  $\rightarrow$  D $\rho$ , $\pi$  sensitive to  $sin(2\beta + \gamma)$ 
  - • $\lambda_c^2$  suppressed amplitude interference!
- Rates from SU(3) related D<sub>s</sub>
   modes
  - •~20% error from SU(3) breaking

| Mode                              | Measured BF                          |  |  |  |  |
|-----------------------------------|--------------------------------------|--|--|--|--|
| $B^0 \rightarrow D_s^+ \rho^-$    | < 1.9 x 10 <sup>-5</sup> (90% C.L.)  |  |  |  |  |
| $B^0 \rightarrow D_s^{*+} \rho^-$ | < 5.3 x 10 <sup>-5</sup> (90% C.L.)  |  |  |  |  |
| $B^0 \rightarrow D_s^+ \pi^-$     | $3.2 \pm 0.9 \pm 1.0 \times 10^{-5}$ |  |  |  |  |
| $B^0 \rightarrow D_s^{*+}\pi^-$   | < 4.1 x 10 <sup>-5</sup> (90% C.L.)  |  |  |  |  |
| $B^0 \rightarrow D_s^- K^+$       | $3.2 \pm 1.0 \pm 1.0 \times 10^{-5}$ |  |  |  |  |
| $B^0 \rightarrow D_s^* K^+$       | < 2.5 x 10 <sup>-5</sup> (90% C.L.)  |  |  |  |  |



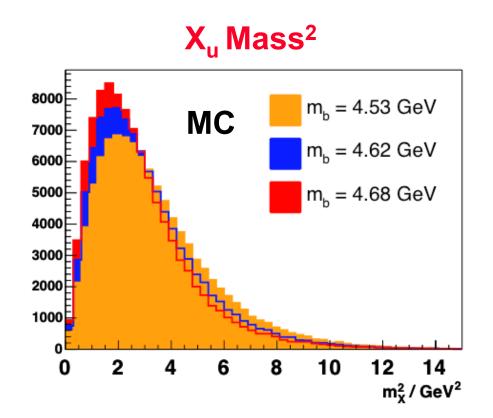

### Semi-leptonic B decays



- Sensitive to V<sub>ub</sub> and V<sub>cb</sub>
  - —Fundamental CKM parameters
  - —Vub/Vcb vs β allows a stringent SM consistency test
- Can be used to determine m<sub>b</sub>
  - —Fundamental Standard Model parameter
  - $\ \ \ \ \Gamma_{\rm weak} \propto {\rm m_b^5}$ , so important for rate estimates
    - <1% precision needed for ILC Higgs tests</li>
- LBNL group has been strongly involved in the past
  - —C. LeClerc thesis (B→ D\*Iv lifetime, mixing)
  - —M. Gill thesis (B→ D\*Iv Form Factors, publication in review)

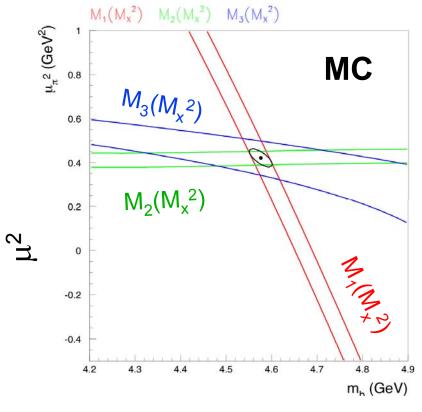
# V<sub>ub</sub> from inclusive semi-leptonic decays (Battaglia, Tackmann)






#### LBL involvement

| Variable      | $V_{ub}(X10^{-3})$ | Exp. Error | HQE param                | Other theory |  |
|---------------|--------------------|------------|--------------------------|--------------|--|
|               |                    |            | error (m <sub>b</sub> ,) | error        |  |
| $M_{x}$       | 4.77               | ±0.4       | +0.68-0.43               | ±0.13        |  |
| $M_x$ - $q^2$ | 4.92               | ±0.53      | ±0.46                    |              |  |
| $q^2$ - $E_1$ | 3.95               | ±0.27      | +0.58-0.42               | ±0.25        |  |
| $E_1$         | 4.44               | ±0.25      | +0.42-0.38               | ±0.22        |  |


# Constraining m<sub>b</sub> with M<sub>x</sub> moments (Battaglia, Tackmann)

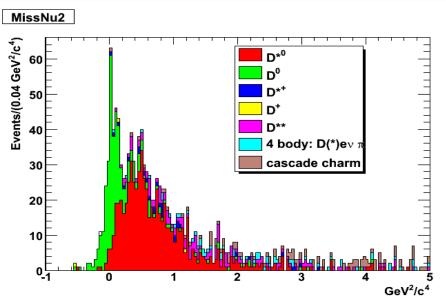




 $m_b$  also constrained in  $B \rightarrow s \gamma$ , ...

b $\rightarrow$ u moments 10X more sensitive to  $m_b$  than b $\rightarrow$ c




### B→X<sub>c</sub>Iv (Battaglia,Lopes-Pegna)

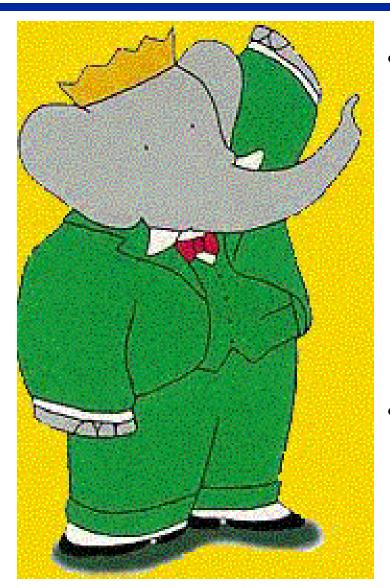


- 30% of B→X<sub>c</sub>Iv BR unknown or has large uncertainties
  - —Affects V<sub>cb</sub>, V<sub>ub</sub> measurements through crossfeed + background
- D\*\* poorly understood
  - —Broad + narrow resonances
  - —Non-resonant contributions
- New technique using hadronic B reconstruction
  - —5X better m<sub>v</sub><sup>2</sup> resolution
  - —Preliminary result spring 2006

#### **PDG 2004**

| Decay Mode                                | Branching Fraction |  |  |  |  |
|-------------------------------------------|--------------------|--|--|--|--|
| $B^0  ightarrow l^+  u_l + { m anything}$ | 10.5 $\pm$ 0.8 %   |  |  |  |  |
| $B^0 \to D^*(2010) - l^+ \nu_l$           | $5.44\pm0.23~\%$   |  |  |  |  |
| $B^0 	o D^- l^+ \nu_l$                    | $2.14\pm0.20~\%$   |  |  |  |  |
| $B^0 	o D^{**} l^+ \nu_l$                 | ??                 |  |  |  |  |
| $B^0 	o D^{*-} n \pi l^+ \nu_l$           | ??                 |  |  |  |  |




## Other LBNL BaBar Analysis Contributions



- $B^+ \rightarrow \rho^0 K^{*+}$  and  $B \rightarrow f^0 K^{*+}$  (L. Mir)
  - —Final results by summer 2006
- B<sup>+</sup>→η'K<sup>+</sup> search (G. Kukartzev, A. Gritsan)
  - —Possible gluonium enhancement
- $B \rightarrow \Lambda_c XIv$  Branching Ratio
  - —Preliminary results by summer 2006
- Publications board chair (R. Cahn)
- Physics reach studies (A. Gritsan, L. Mir)
  - —Future of  $\rho\rho$ , angle  $\alpha$  measurements
  - —Future of Vector-Vector studies and  $sin2\beta$  from penguins

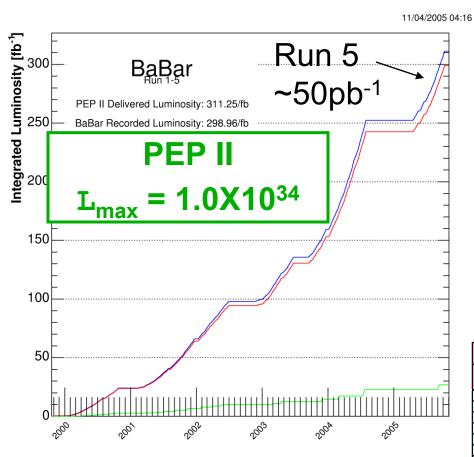
### **FY2006 DOE Budget**

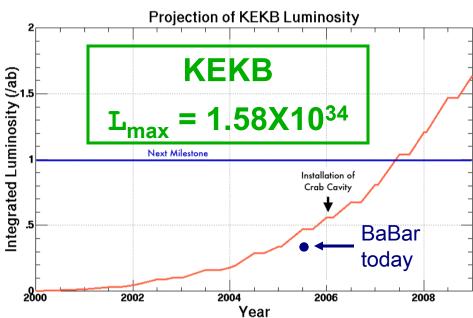





- "In order to fully exploit the unique opportunity to expand our understanding of the asymmetry of matter and antimatter in the universe, a high priority is given to the operations, upgrades and infrastructure for the B-factory at SLAC."
- "... B-factory operations are terminated by FY 2008 at the latest."

(Staffin/DOE)


#### P5 Review of BaBar

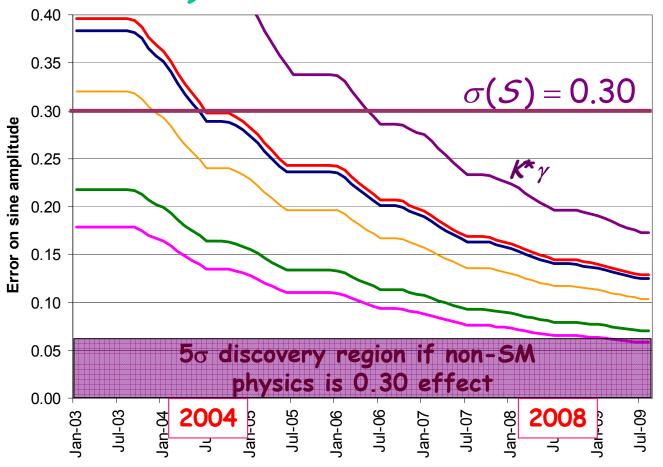



- DOE/NSF HEPAP review of BaBar October 2005
- Charge from DOE: "What factors might lead to stopping B-factory operations one year, or two years earlier than planned"
- Strong presentations from BaBar and others
  - —B-physics is still interesting
    - Our results will not be erased by LHC or ILC
  - —BaBar is still active and competitive
  - —2 B-factories are still complementary
- Report due end November

### **Competing with Belle**








|           |        |          |      |        |        |          |      | Errors/Luminosity |            |            |       |       |
|-----------|--------|----------|------|--------|--------|----------|------|-------------------|------------|------------|-------|-------|
| S         | Belle  |          |      |        | BABAR  |          |      | Belle             | BABAR      |            |       |       |
|           |        |          |      | Untag  |        |          |      | Untag             |            |            | Perf  | Lumi  |
| Mode      | S      | stat err | lumi | sample | S      | stat err | lumi | sample            | st*sqrt(L) | st*sqrt(L) | Ratio | Ratio |
| phiK0     | 0.060  | 0.330    | 253  | 175    | 0.500  | 0.250    | 205  | 212               | 5.249      | 3.579      | 1.466 | 2.150 |
| etapK0    | 0.650  | 0.180    | 253  | 512    | 0.270  | 0.140    | 205  | 819               | 2.863      | 2.004      | 1.428 | 2.040 |
| KKK0      | 0.490  | 0.180    | 253  | 399    | 0.550  | 0.170    | 205  | 452               | 2.863      | 2.434      | 1.176 | 1.384 |
| f0K0      | -0.470 | 0.410    | 253  | 102    | 0.950  | 0.320    | 192  | 152               | 6.521      | 4.434      | 1.471 | 2.163 |
| pi0K0     | 0.300  | 0.590    | 253  | 173    | 0.350  | 0.300    | 205  | 300               | 9.385      | 4.295      | 2.185 | 4.773 |
| ccbarK0   | 0.728  | 0.056    | 140  | 5417   | 0.722  | 0.040    | 205  | 10320             | 0.663      | 0.573      | 1.157 | 1.339 |
| pipi      | -1.000 | 0.210    | 140  | 373    | -0.300 | 0.170    | 205  | 467               | 2.485      | 2.434      | 1.021 | 1.042 |
| rhopi S   | -0.280 | 0.230    | 140  | 483    | -0.100 | 0.140    | 192  | 1184              | 2.721      | 1.940      | 1.403 | 1.968 |
| rhopi A+- | -0.020 | 0.160    | 140  | 483    | -0.210 | 0.110    | 192  | 1184              | 1.893      | 1.524      | 1.242 | 1.543 |
| rhopi A-+ | -0.530 | 0.290    | 140  | 483    | -0.470 | 0.140    | 192  | 1184              | 3.431      | 1.940      | 1.769 | 3.129 |
| Averages  |        |          |      |        |        |          |      |                   |            |            | 1.432 | 2.153 |

BaBar physics sensitivity/L ~40% above Belle

## Snapshot I: Summer 2008 (D.

MacFarlane)



Luminosity expectations

2004=240 fb<sup>-1</sup> 2008=1.0 ab<sup>-1</sup>



Projections are statistical errors only; but systematic errors at few percent level Golden modes reach 5 sigma level



#### LBNL's Future in BaBar



- LBNL will participate in BaBar through FY08
  - —Analysis
  - —Detector support
    - SVT refurbishment probably NOT required
  - —Software support
    - Tracking improvements
- The BaBar dataset will remain useful after 2008
  - —Final publications will be years after last event
  - —Maintain an active *Electrons* physics program while waiting for ILC decisions
    - Students and postdocs can analyze real data while performing detector R+D

#### **Conclusions**



- LBNL has made huge contributions to the current success of the BaBar program
- BaBar is not yet finished!
  - —Only ~25% of the total events have been seen
  - —We are still improving how we use our data
  - —We are still discovering new physics results
- LBNL will continue to participate in BaBar
  - —Support the competition with Belle
  - —Fully exploit the BaBar data
  - —Facilitate the passage to HEPs future
- Key concern: can we keep the group strong enough to be effective up to and through 2008?